35 research outputs found

    Unsupervised Polygonal Reconstruction of Noisy Contours by a Discrete Irregular Approach

    Get PDF
    International audienceIn this paper, we present an original algorithm to build a polygonal reconstruction of noisy digital contours. For this purpose, we first improve an algorithm devoted to the vectorization of discrete irregular isothetic objects. Afterwards we propose to use it to define a reconstruction process of noisy digital contours. More precisely, we use a local noise detector, introduced by Kerautret and Lachaud in IWCIA 2009, that builds a multi-scale representation of the digital contour, which is composed of pixels of various size depending of the local amount of noise. Finally, we compare our approach with previous works, by con- sidering the Hausdorff distance and the error on tangent orientations of the computed line segments to the original perfect contour. Thanks to both synthetic and real noisy objects, we show that our approach has interesting performance, and could be applied in document analysis systems

    Thick Line Segment Detection with Fast Directional Tracking

    Get PDF
    International audienceThis paper introduces a fully discrete framework for a new straight line detector in gray-level images, where line segments are enriched with a thickness parameter intended to provide a quality criterion on the extracted feature. This study is based on a previous work on interactive line detection in gray-level images. At first, a better estimation of the segment thickness and orientation is achieved through two main improvements: adaptive directional scans and control of assigned thickness. Then, these advances are exploited for a complete unsupervised detection of all the line segments in an image. The new thick line detector is left available in an online demonstration

    Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications.

    Get PDF
    BACKGROUND: Ectasia development occurs due to a chronic corneal biomechanical decompensation or weakness, resulting in stromal thinning and corneal protrusion. This leads to corneal steepening, increase in astigmatism, and irregularity. In corneal refractive surgery, the detection of mild forms of ectasia pre-operatively is essential to avoid post-operative progressive ectasia, which also depends on the impact of the procedure on the cornea. METHOD: The advent of 3D tomography is proven as a significant advancement to further characterize corneal shape beyond front surface topography, which is still relevant. While screening tests for ectasia had been limited to corneal shape (geometry) assessment, clinical biomechanical assessment has been possible since the introduction of the Ocular Response Analyzer (Reichert Ophthalmic Instruments, Buffalo, USA) in 2005 and the Corvis ST (Oculus Optikgerate GmbH, Wetzlar, Germany) in 2010. Direct clinical biomechanical evaluation is recognized as paramount, especially in detection of mild ectatic cases and characterization of the susceptibility for ectasia progression for any cornea. CONCLUSIONS: The purpose of this review is to describe the current state of clinical evaluation of corneal biomechanics, focusing on the most recent advances of commercially available instruments and also on future developments, such as Brillouin microscopy.(undefined)info:eu-repo/semantics/publishedVersio

    On the beneficial effect of noise in vertex localization

    Get PDF
    A theoretical and experimental analysis related to the effect of noise in the task of vertex identication in unknown shapes is presented. Shapes are seen as real functions of their closed boundary. An alternative global perspective of curvature is examined providing insight into the process of noise- enabled vertex localization. The analysis reveals that noise facilitates in the localization of certain vertices. The concept of noising is thus considered and a relevant global method for localizing Global Vertices is investigated in relation to local methods under the presence of increasing noise. Theoretical analysis reveals that induced noise can indeed help localizing certain vertices if combined with global descriptors. Experiments with noise and a comparison to localized methods validate the theoretical results

    Agdal : patrimoine socio-écologique de l'Atlas marocain

    No full text

    Curvature Estimation along Noisy Digital Contours by Approximate Global Optimization ⋆

    Get PDF
    In this paper we introduce a new curvature estimator along digital contours, that we called Global Min-Curvature estimator (GMC). As opposed to previous curvature estimators, it considers all the possible shapes that are digitized as this contour, and selects the most probable one with a global optimization approach. The GMC estimator exploits the geometric properties of digital contours by using local bounds on tangent directions defined by the maximal digital straight segments. The estimator is then adapted to noisy contours by replacing maximal segments with maximal blurred digital straight segments. Experiments on perfect and damaged digital contours are performed and in both cases, comparisons with other existing methods are presented. Key words: discrete geometry, digital contours, curvature estimation, feature detection, robustness to noise ⋆ This work was partially funded by the ANR project GeoDIB,

    A reversible and statistical method for discrete surfaces smoothing

    No full text
    In this article we propose an original reversible method for discrete surface smoothing. This method is based on a statistical estimation of the discrete tangent plane on the voxels of the discrete surface. A geometrical constraint is used to control the recognition of the tangent plane. The resulting surface representation allows us to get both smooth normal vectors of the surface and a smooth surface mesh while preserving the geometrical properties of the surface
    corecore